Decibel, wozu, weshalb, warum?

Das dB in der Praxis des Funkamateurs

Hans E. Krüger, DJ8EI / PA8EI, OV Bad Honnef, G09

Das dB

-an und für sich
-und die Verluste in Speiseleitungen / Koaxkabeln
-und die Verluste im Sendezweig
-und die Antenne

Das dB.....

.....an und für sich.....

dB, dBm wo kommt das vor?

- S Meter.....S9 + 20 dB
- Antennengewinn13,2 dBd, 15,35 dBi
- Verstärkerausgangspegel.....60dBm
- Kabeldämpfung RG 213, 22,5 dB/100m/1000 MHz
- Freiraumdämpfung, Link Budget in dB
- Verluste in Koax Steckern/Buchsen in dB
- abgestrahlte Leistung in ERP, EIRP
- Einfügungsdämpfung Koax Relais, Blitzschutz,
 TP Filter, SWR Meter.....0.2...0,05 dB
- Standortbescheinigung, Antennendiagramme, (Vertikale) Winkeldämpfung in dB
- Antennen Vor Rückwärtsverhältnis25 dB
- Diplexer Einfüg.Dämpfung 1 dB, Entkopplung 40 dB

dB und dBm

- dB ist das Verhältnis zweier elektrischer Größen, z. B. Leistungen
- dBm ist eine absolute Größe, ein Pegel, festgelegt 0 dBm = 1mW 30 dBm = 1 W
- Nützlich zur Berechnung von Verstärkung, Dämpfung oder z.B. der absoluten Sendeleistung, auch für die "Selbsterklärung" nutzbar

Ein wenig Mathematik......

- X/dB = 10 * log P1/P2
- (Der 10er log von 100 ist = 2, da 10², von 1000 = 3)
 Also z.B. Leistungsfaktor 1000 = 10³ = 30 dB
- Beispiel 1: PA Input = P2 = 100 Watt
 PA Output = P1 = 400 Watt
 P1/P2 = 4 log 4 = 0,6
 X = 10 * 0,6 = 6 dB (Verstärkung)
- Merke: 4 fache Leistung = 1 S Stufe!
- Beispiel 2: Verstärkung 100 auf 750 Watt, log 7,5 = 0,875
 10 * log 7,5 = 8,75 dB, ca. 1.5 S Stufen!

Nochmal langsam zum Mitrechnen.....

 1. Fall: gegeben ist Leistungsverhältnis, gesucht ist Dämpfung/Verstärkung in dB

Beispiel Steuerleistung 80 Watt, PA Leistung 640 Watt gesucht: Verstärkung a(dB) = 10 * log 640 / 80

Rechenschritte:

$$640 / 80 = 8$$

$$log(8) = 0.903$$

$$10 * 0.903 = 9.03$$

Verstärkung a(dB) = 9,03 dB

Nochmal langsam zum Mitrechnen.....

 2. Fall: Gegeben ist Dämpfung/Verstärkung, gesucht ist Leistung an der Antenne P(ant)

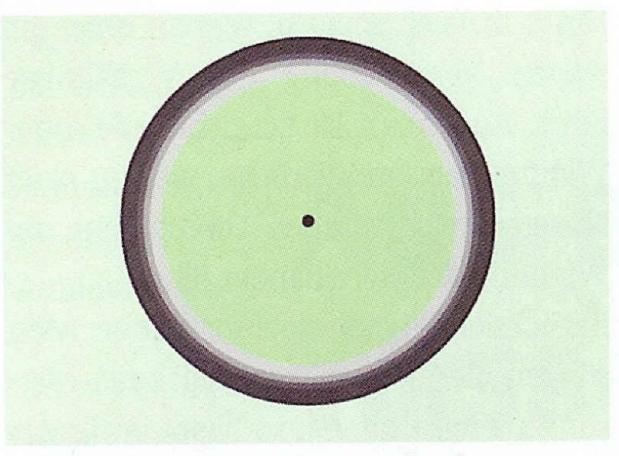
Rechenschritte:

```
2,8/10 = 0,28 = log 90 / P(ant)
(Rechenregel: 10 hoch log (x) = x, also beide Seiten
der Gleichung 10 hoch!)
10 hoch 0,28 = 10 hoch log 90 / P(ant) = 90 / P(ant)
1,905 = 90 / P(ant)
P(ant) * 1,905 = 90, P (ant) = 90 / 1,905
```

$$P(ant) = 90 / 1,905 = 47,3 Watt$$

Fazit

- Es lohnt sich, sich einen einfachen Taschenrechner zuzulegen......
- Die dB Rechnung führt komplizierte
 Rechnereien auf einfache Addition zurück
- Prospektangaben werden transparenter und verständlicher
-das know how hilft auch beim Kauf....
- (Funkamateure sind auf dem Stand der Technik.....)


Das dB.....

.....und die Verluste in Speiseleitungen / Koaxkabeln

Dämpfung und Eigenschaften von Speiseleitungen

- Alle Speiseleitungen sind verlustbehaftet
- Koax Kabel Verluste entstehen durch
 - Ohmsche Verluste, Widerstand des Materials
 - Skineffekt , Verluste mit steigender Frequenz
 - Dielektrikum, (HF in Wärme) Wichtig: Qualität des Dielektrikums! (Je mehr Luft, desto besser....)
 - Alterung, Längswasserdichtigkeit, Korrosion
- Die Dämpfung steigt mit wachsender Frequenz
- Verkürzungsfaktor und Wellenwiderstand sind nicht frequenzabhängig
- Paralleldrahtleitungen haben prinzipiell weniger Verluste dafür Beeinflussung durch Umwelt und Umgebung

Der Skineffekt ("Hauteffekt")

Stromverdrängung in den Randbereich (Skin-Effekt)

Skineffekt

Eindringtiefe in Cu als Funktion der Frequenz

Frequenz	Eindringtiefe
1 TOGUCTIZ	

50 Hz 9,38 mm

1 kHz 2,10 mm

10 kHz 0,66 mm

100 kHz 0,21 mm

1 MHz 0,066 mm = 66 um

10 MHz 21 um

100 MHz 6,6 um

1 GHz 2,1 um

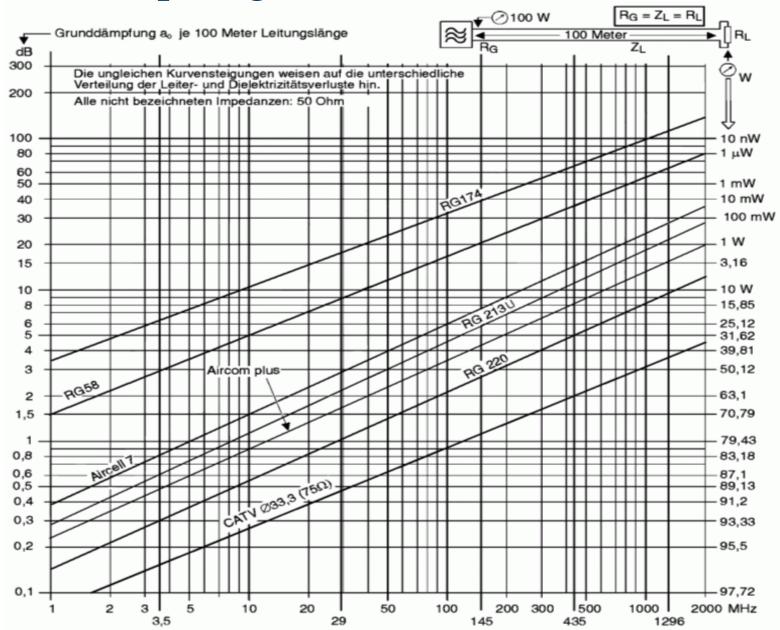
10 GHz 0,7 um

100 GHz 0,2 um = 200 nm

Eigenschaften von Koax Kabeln Verkürzungsfaktor / Dielektrikum

Die relative Dielektrizitätskonstante der Isolierung, ε_r gibt an, um wieviel das elektrische Feld im Material gegenüber dem Freiraum geschwächt wird. Daraus errechnet sich der Verkürzungsfaktor $V = c_0 / [\varepsilon_r]$. c_0 ist die Lichtgeschwindigkeit in Luft.

Handelt es sich bei diesem Medium um atmosphärische Luft, so ist $v \approx c_0 \approx 3 \cdot 10^8$ m/s (Lichtge-


ε_1	v/%	V	
2,3	66	0,66	RG 58, RG 213
2,0	71	0,71	-
1,5	82	0,82	Aircell, Ecoflex
1,6	79	0,79	-
1,0	100	1,00	-
	2,3 2,0 1,5 1,6	2,3 66 2,0 71 1,5 82 1,6 79	2,3 66 0,66 2,0 71 0,71 1,5 82 0,82 1,6 79 0,79

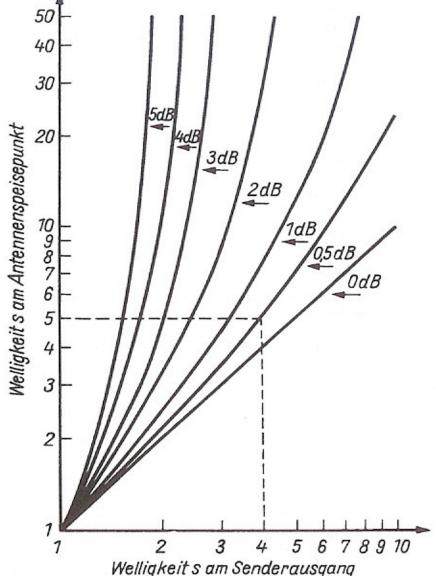
Verkürzungsfaktoren

Typische Koax - Kabel Dämpfung

Typische Kabeldämpfung von Koax Kabeln im Amateurfunk						dB/100m
Тур	3,5 MHZ	7 MHZ	28 MHZ	145 MHZ	435 MHZ	1296 MHZ
RG 58	2,9	3,8	7,7	19,3	37	58
RG213	0,6	1,5	3,0	9,2	17,2	24,2
Aircell 5	1,9*	2,6*	4,6*	12,6*/11,9	20,9	39
Aircell 7	0,8	1,9	3,7	7,9	14,1	26,1
Ecoflex 10	0,7	1,2	2,1	4,8	8,9	16,5
Aircom Plus	0,5	1,1	2,0	4,5	8,2	15,2
Ecoflex 15	0,5	0,6	0,9	3,4	6,1	11,4
Zellflex 3/8	0,5	0,7	1,4	3,3	5,9	10,6
Zellflex 5/8	0,3	0,5	0,9	2,1	3,6	6,6
Zellflex 7/8	0,2	0,3	0,6	1,5	2,7	5,1
Grün = Vorzugsweise						
blau = gemessen						

Grunddämpfung von Koax Kabeln

Dämpfungsmessung mit dem SWR Analyzer MFJ 269

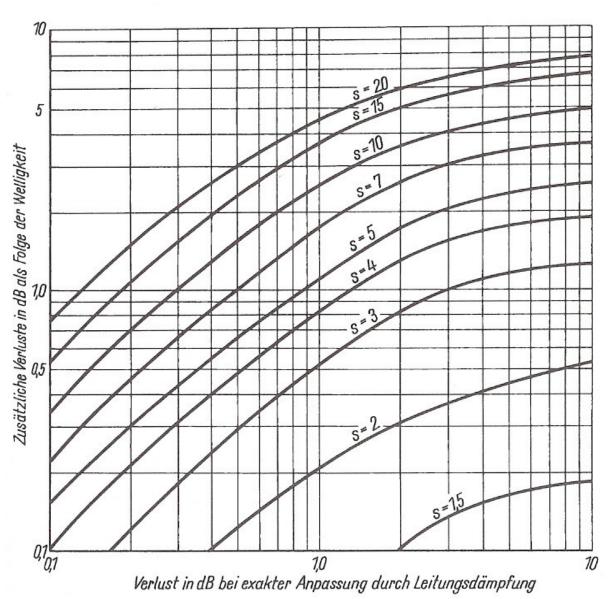

SWR Fehlmessung bei Fehlanpassung

- Diagramm und Dämpfungswerte gelten bei Abschluss mit Wellenwiderstand bzw. SWR 1,0
- Bei SWR >1, d.h. Fehlanpassung der Antenne, messen wir am Senderausgang ein zu gutes SWR!
- Plausibilität: Ausgang mit Kurzschluss (SWR = 00, Dämpfung 5 dB, Eingang SWR = 2!
- Siehe Diagramm SWR am Eingang und Ausgang einer angepassten Koaxleitung
- Merke:

Je höher die Kabeldämpfung, desto grösser der SWR - Messfehler im Shack! (oder mit RG58 haben wir auf 145 Mhz immer ein sehr gutes SWR....!)

SWR am Eingang und Ausgang einer Leitung

mit Dämpfung

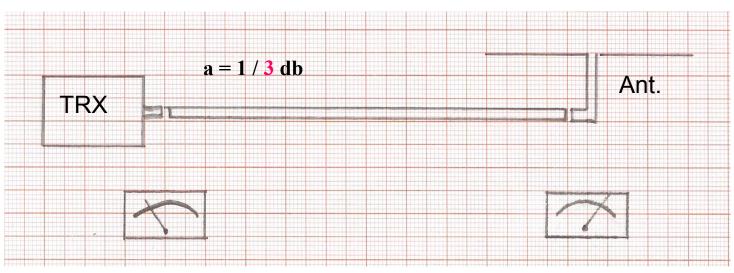


Quelle: Rothammel

Zusätzliche Leitungsdämpfung bei Fehlanpassung SWR > 1

- Bei Fehlanpassung unterliegt sowohl die hinlaufende Leistung als auch die reflektierte Leistung der Leitungsdämpfung.
- Hinlaufende und rücklaufende Spannungen und Ströme bilden stehende Wellen.
- Der grössere Effektivstrom erhöht die Ohmschen Verluste, die höhere Spannung die Dielektrischen Verluste
- Dadurch erhöht sich die resultierende Kabeldämpfung durch die Fehlanpassung nochmals um einen vom SWR Wert abhängigen Anteil, siehe Diagramm

Zusätzliche Verluste infolge von Fehlanpassung



Quelle:

Rothammel

Beispiel: SWR Messungen von Antennen, Fehlmessung und Zusatzverluste bei Fehlanpassung

P = 100W, 30m RG 213, a = 1,0 dB bei 30 MHZ / 3 dB bei 145 MHZ

Bei Anpassung (SWR = 1)

$$P_1 = 100 \text{ W}$$

$$a = 1 / 3 dB$$

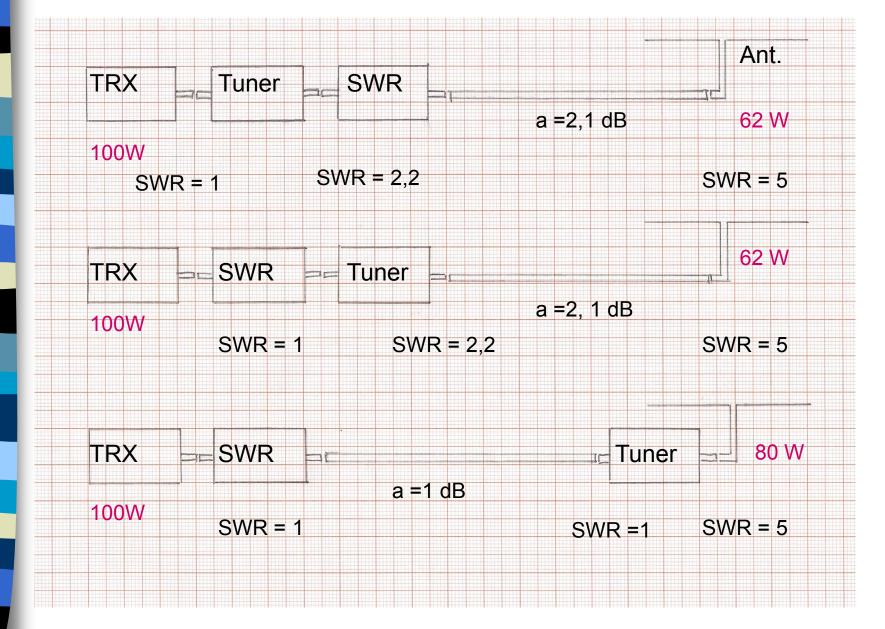
$$P2 = 80/50W$$

$$SWR = 1$$

$$SWR = 1$$

$$P_1 = 100 W$$

$$a = 2,1 / 5 dB$$


$$P_2 = 62/32 \text{ W}$$

SWR =
$$2,2/1,5$$

$$SWR = 5$$

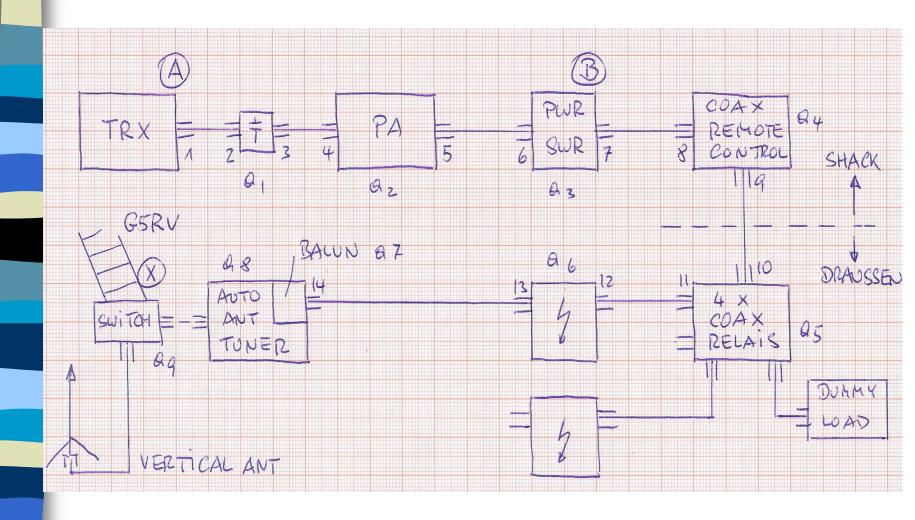
Versuch SWR = 1 und SWR = 5

SWR- und Leistungsmessung bei Antennentunern

Fazit

- Es lohnt sich, sich bei der Einrichtung der Amateurfunkstation um den Leistungstransport über die Speiseleitung einige Gedanken zu machen....
- Je höher die Frequenz, desto wichtiger wird dies....
- Auf der anderen Seite.....Augenmaß bewahren, kein dB Fetischismus! Wirkungsgrad W ist alles.....

Wirkungsgrad = Output/Input, das heisst wenn der Input=Geld für teure Kabel zu gross wird, fällt W!


Das dB

und die Verluste im Sende / Empfangszweig an praktischen Beispielen

Typische Einfügungsdämpfung von Komponenten im S/E Zweig 1,8 - 30 MHz

	SWR Meter Einfügungsdämpfung Diamond SX 100/200	0,1/0,2 dB
•	PA Einfügungsdämpfung	0,1 dB
•	Fritzel Balun AMA/COM Series	0,2 dB
•	Coax Relais Antennenschalter SSB AS 304	0,15 dB
•	Coax Relais (hochwerig) CX 520D	0,1 db
	Fernsteuer Ant Umschalter LDG DTS4	< 1dB
	Diplexer KW/VHF/UHF Diamond MX3000	0,15/0,25dB
	Tiefpassfilter	0,1 dB
	Blitzschutzpatrone	0,1/0,2 dB
•	Antennentuner LDG/MFJ/SGC	0,1/0,2 dB
•	Fernspeiseweiche MFJ	0,1 dB
•	Mastvorverstärker 6m SSB, Fernspeiseweiche	0,1 + 0,1 dB
	PL/SO 239 Stecker Buchse Standard	0,05dB
	PL/SO 239 Qualität/Professional	0,025dB

Beispielrechnung KW Station (DJ8EI)

Beispielrechnung Best Case (28 MHz)

14 x SO239/PL Qualitä	at 14x0.025 db	0,35 dB
38m Coax Ecoflex 10,	38m x 2,1dB/100m	0,8 dB
Durchgangsdämpfung	C - Kasten	0,01 dB
PA		0,1 dB
SWR Meter		0,1 dB
Coax Remote Schalter		0,05 dB
4 fach Coax Relais		0,15
Blitzschutz		0,1 dB
Balun im Automat Ant.	Tuner	0,1 dB
Automatiktuner		0,05 dB
Antenna Switch		0,05 dB

Summe Dämpfung A - X(ant)

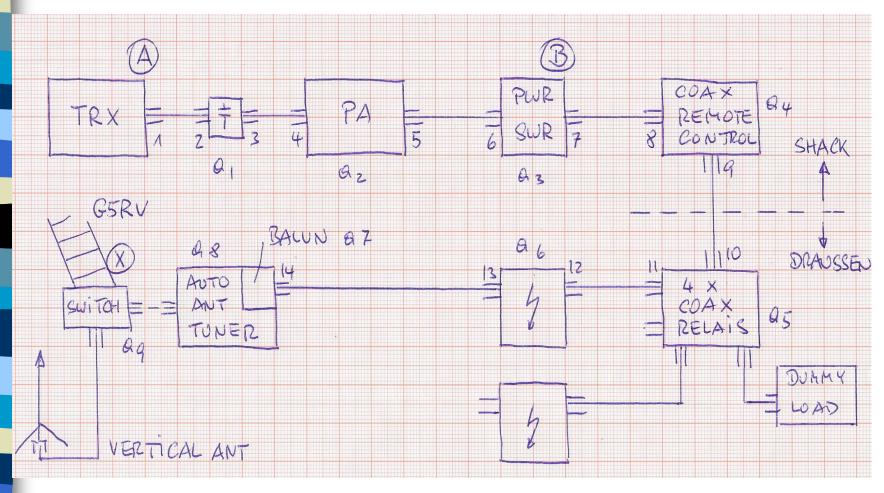
1,86=10 log P(ant)/P(A)

1,86 dB

P(A) = 100 W P(ant) = 65 Watt

Beispielrechnung Worst Case

14 x SO 239/ PL Standard	14 x 0,05	0,7 dB
38 m RG58 38m x 7,7 dB/10	0m	2,74 dB
Durchgangsdämpfung C Kaste	en	0,01 dB
PA		0,1 dB
SWR Meter		0,2 dB
Coax Remote Schalter		0,1dB
4 fach Coax Relais		0,2 dB
Blitzschutz		0,15 dB
Balun		0,2 db
Antennentuner		0,2 dB
Antennenumschalter		0,1 dB


 $4,88 = 10 \times \log P(A)/P(ant)$ PA = 100 Watt

Summe Dämpfung A - X(ant)

P(ant) = 33 Watt

4,88dB

Beispielrechnung KW Station (DJ8EI) TRX(A) bis SWR Meter (B)

Beispielrechnung TRX (A) bis SWR/Power Meter (B) (Wieso zeigt das Power Meter am TRX nur 90 Watt an ?)

6 x SO239 PL Qualität	6x 0.025 dB	0,15 dB
■ 3 m RG 213, 3m x 3,0 dB	3/100m	0,09 db
Durchgangsdämpfung C	Kasten	0,01 dB
PA		0,1 dB
SWR Meter		0,1 dB

Summe Dämpfung A - B

 $0.45 = 10 \log P(A)/P(B)$

P(B) = 90 Watt

0,45 dB

P(A) = 100Watt

Vergleich Dämpfungsmessung /Rechnung (Wie weit folgt die Praxis der Theorie?)

- Gemessen: Teststrecke mit
 - 12 PL Steckverbindern Profiqualität
 - 1 Coaxschalter
 - 15 m Aircell 5
 - 6 x 1 m RG 213

	Rechnung best Case	<u>Messung</u>
145 MHz	2,2 dB	2,7 dB
30 MHz	1,1 dB	1,0 dB
3,6 MHz	0,7 dB	0,3 dB

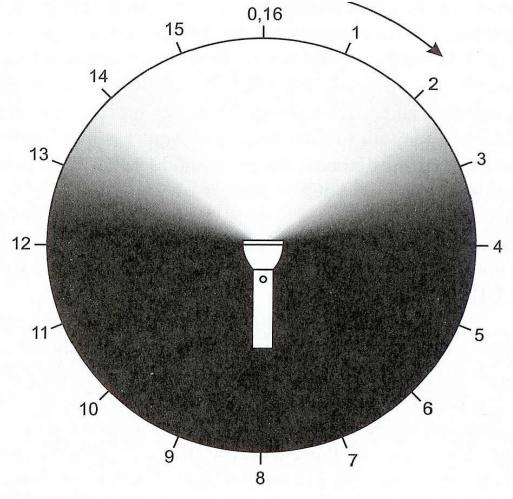
Fazit

- Kleinvieh macht auch einen großen Haufen (Termiten = 0.2mm lang!)
- Es lohnt sich, darauf zu achten, ein Minimum an Steckverbindern, Kabellängen, und Komponenten zwischen Sender/Empfänger und Antenne zu haben
- Wenn längere Kabelverbindungen unausweichlich.....möglichst kein RG58 etc......
- Beim Kauf von Komponenten, SWR Meter, Koaxschaltern, HF Steckern und - Buchsen auch mal auf die 0.x dB achten......

Das dB.....

.....und die Antenne

Antennen "Gewinn"

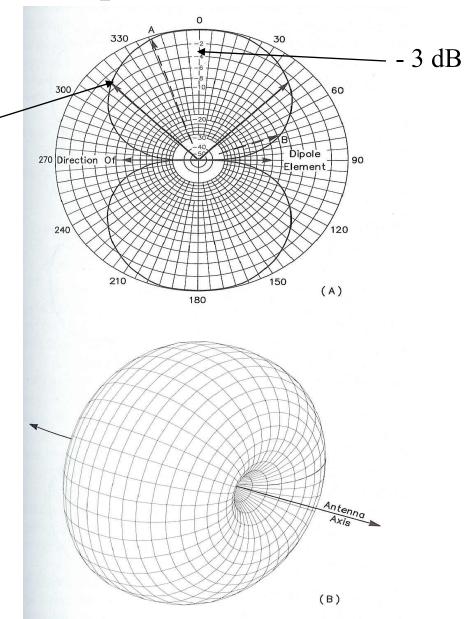

- Richtwirkung und "Gewinn"
- Der Isotropstrahler Theoretisches Modell
- Analogie Taschenlampe
- Strahlungsdiagramm eines Dipols
- dBi, dBd, dBc

Der Isotropstrahler

- Der Isotropstrahler ist ein theoretisches Gedankenmodell
- Ein verlustloser punktförmiger Strahler mit kugelförmiger Strahlungscharakteristik gleichmäßig in alle Richtungen
- Gewinn 0 dBi
- Eignet sich nicht für Vergleichsmessungen, wie z. B. der Lambda / 2 - Dipol (Gewinn 0 dBd), wohl aber als Bezugsnormal für Gewinnrechnungen (z.B. Gewinn Dipol = 2,15 dBi)
- Der Halbwellendipol wird als reales Gebilde als Vergleichsantenne bei Gewinnmessungen verwendet, "Messdipol"

Versuch Isotropstrahler und Richtantenne

Gewinn einer Antenne



The beam from a flashlight illuminates a totally darkened area as shown here. Readings taken with a photographic light meter at the 16 points around the circle may be used to plot the radiation pattern of the flashlight.

Richtwirkung eines Dipols im freien Raum

Öffnungswinkel

3 dB Öffnungswinkel = 90 Grad

Antennengewinn dBd und dBi

- Gewinn/Verlust bezogen auf Halbwellendipol= dBd
- Bezogen auf (fiktiven) Isotropstrahler = dBi (isos = gleich, tropos = Richtung)
- Wichtig bei Antennenangaben:
 - der Isotropstrahler hat 0dB Gewinn
 - der Halbwellendipol hat gegenüber dem Isotropstrahler einen Gewinn von 2,15 dB
- Beispiel: > 11 El. 2m Flexayagi 12,4 dBd,
 » 11 El. 2m Tonna 14,2 dBi
- Gewinnangaben in dBi sind 2,15 dB höher!

Antennengewinn dBc

 Antennen mit zirkularer Polarisation (circular) dBc

Feldpolari- sation Antennen polarisation	vertikal	horizontal	zirkular rechtsdre- hend	zirkular linksdrehend
vertikal 	0 dB	00	3dB	3 dB
horizontal	00	0 dB	3dB	3 dB
zirkular rechtsdrehend	3 dB	3 dB	0 dB	000
zirkular linksdrehend	3 dB	3 dB	∞	0 dB

Richtfaktor D und Gewinn G

- Richtfaktor D (Directivity) berechnet sich aus den Bündelungseigenschaften (horizontales und vertikales Strahlungsdiagramm)
- Gewinn G (Gain) berücksichtigt darüberhinaus noch den Antennenwirkungsgrad n (z.B. Drahtverluste)
- $G = n \times D$ $n = P_{sende}/P_{ein}$
- Verlustloser Dipol G = D = 1,64 (in dB: 2,15 dB)
- Beispiel realer Halbwellendipol mit 2mm
 Drahtdurchmesser, n = 98%
- G_{verlustbehaftet} = 0,98 X 1,64 = 1,60
- in dB Rechnungsweise: Gewinn X/dB = 10 x log G
- G/verlustbehaftetDipol = 2,02 dB
- Merke: Reale Differenz G Dipol zu Isotrop = + 2 dB

...auf der anderen Seite....

- 100 Watt auf 20 mtr und ein Stück Draht mit 0 dBi...... sind 100W EIRP (Effective/Equivalent Isotropic Radiated Power)
- 100 Watt mit einer Groundplane mit 1,76 dbisind
 150 W EIRP
- 100 Watt mit einem Halbwellendipol mit 2,15 dBi....sind 164 W EIRP
- 100 Watt mit einem 3 El Beam mit 8,5 dBisind 707 W EIRP
- 100 W mit einer Groundplane und einer 750 W PA....sind (nur) 498 W EIRP !!
- Fazit: Stecke Dein Geld vorzugsweise in die Antenne statt in eine PA! Weiterer Vorteil: die Antenne bringt's auch beim Hören.....

Fazit

- "Gewinn" einer Antenne ist unmittelbar verknüpft mit der Richtwirkung
- Wichtig ist die separate Betrachtung der Horizontalen Richtwirkung und der Vertikalen Richtwirkung
- Es gibt keinen "Gewinn" ohne Preis/Aufwand!
- Wichtig ist, die Ausbreitungsbedingungen im jeweiligen Frequenzband zu kennen, um dann die Antenne mit dem optimalen "Gewinn" und dem optimalen Abstrahlungsverhalten auszusuchen.
- Viel dB in der falschen Abstrahlungsebene kann auch hinderlich sein......Beispiel eine steilstrahlende Antenne auf 20 m.....eine flachstrahlende 80 m Antenne im DL Verkehr...

Und die Moral von der (dB) Geschicht':

Ein wenig Rechnen schadet nicht.....!

Tnx es 55 / 73 de DJ8EI / PA8EI